# Thermalization and Flow of Heavy Quarks in the Quark-Gluon Plasma

Hendrik van Hees

Texas A&M University

October 24, 2005

Collaborators: V. Greco, R. Rapp







Nonperturbative elastic heavy-quark resonance scattering Heavy-quark rescattering in the QGP: Langevin process Observables:  $p_T$ -spectra ( $R_{AA}$ ),  $v_2$ Conclusions and Outlook

#### Outline

Motivation

Nonperturbative elastic heavy-quark resonance scattering

Heavy-quark rescattering in the QGP: Langevin process

Observables:  $p_T$ -spectra  $(R_{AA})$ ,  $v_2$ 

### Motivation

- lacktriangle Measured  $p_T$  spectra and  $v_2$  of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium

#### Motivation

- lacktriangle Measured  $p_T$  spectra and  $v_2$  of non-photonic single electrons
- coalescence model describes data under assumption of thermalized c quarks, flowing with the bulk medium
- What is the underlying microscopic mechanism for thermalization?
  - ightharpoonup pQCD elastic HQ scattering: need unrealistically large  $lpha_s$  [Moore, Teaney '04]
  - ► Gluon-radiative energy loss: need to enhance transport coefficient  $\hat{q}$  by large factor [Armesto et al '05]



## Elastic Heavy-quark resonance rescattering

- Possible non-perturbative mechanism: Survival of "D- and B-mesonic resonances" above  $T_c$
- suggestive from lattice QCD (Umeda et al '02, Datta et al '03)
- provides elastic resonant rescattering of heavy quarks in the QGP
- effective field-theory model based on
  - chiral symmetry
  - spin symmetry of heavy-quark effective theory



## Elastic Resonance Scattering



- ▶ D-meson propagators dressed with one-loop self energies
- Only two model parameters:
  - ▶ mass of resonances:  $m_D = 2 \text{ GeV}$
  - ▶ coupling constant  $\Rightarrow \Gamma_B = 0.4...0.75 \text{ GeV}$
- ► Same model for B mesons

$$m_B = 5 \text{ GeV}, \Gamma_B = 0.4 \dots 0.75 \text{ GeV}$$



## Contributions from pQCD



In-medium Debye-screening mass for *t*-channel gluon exchange:

$$\mu_q = gT$$
,  $\alpha_s = 0.4$ 



#### Cross sections



- ▶ pQCD and resonance cross sections: comparable in size
- ▶ BUT pQCD forward peaked ↔ resonance isotropic
- resonance scattering more effective for friction and diffusion

## Drag and Diffusion coefficients

 use Fokker-Planck ansatz to calculate drag and diffusion coefficients



- ▶ resonance contributions factor ~ 2...3 higher than pQCD
- shortens equilibration times  $au_{\sf eq} = 1/\gamma$

## Drag and Diffusion coefficients



- heavy quarks in the QGP
  - thermal elliptic fireball parametrization for QGP
  - ► Fokker-Planck coefficients time dependent
  - Relativistic Langevin simulation for motion of heavy quarks



#### Initial conditions

- $\blacktriangleright$  need initial  $p_T$ -spectra of charm and bottom quarks
  - (modified) PYTHIA to describe exp. D meson spectra, assuming  $\delta$ -function fragmentation
  - ightharpoonup exp. non-photonic single- $e^{\pm}$  spectra: Fix bottom/charm ratio



# Spectra and elliptic flow for heavy quarks





# Observables: $p_T$ -spectra $(R_{AA})$ , $v_2$

- ► Hadronization: Coalescence + fragmentation
- ▶ single electrons from decay of *D* and *B*-mesons





Data before Quark Matter '05



# Observables: $p_T$ -spectra $(R_{AA})$ , $v_2$

- ► Hadronization: Coalescence + fragmentation
- ▶ single electrons from decay of *D* and *B*-mesons



Data presented at Quark Matter '05



# Observables: $p_T$ -spectra $(R_{AA})$ , $v_2$

- ► Hadronization: Fragmentation only
- ▶ single electrons from decay of *D* and *B*-mesons





- ► Assumption: survival of resonances in the (s)QGP
- possible mechanism for nonperturbative interactions
- Equilibration of heavy quarks in QGP
- Observables via Langevin approach and coalescence

- Assumption: survival of resonances in the (s)QGP
- possible mechanism for nonperturbative interactions
- Equilibration of heavy quarks in QGP
- Observables via Langevin approach and coalescence
- Further investigations have to be done:
  - ► Langevin for *D* (B)-mesons in hadronic phase?
  - more realistic (softer) fragmentation
  - better control of coalescence/fragmentation ratio
  - implementation of gluon-radiation processes

